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Lie Symmetries for Hamiltonian Systems
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This paper proposes an algorithm for the Lie symmetries investigation in the case of a
2D Hamiltonian system. General Lie operators are deduced firstly and, in the the next
step, the associated Lie invariants are derived. The 2D Yang-Mills mechanical model is
chosen as a test model for this method.
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1. INTRODUCTION

Nowadays, dynamical systems are intensively studied and play an important
role in the sphere of basic theoretical researches from mathematics and physics,
and in the application spheres of these related branches of science.

Chaos is characteristic for many nonlinear dynamical systems with finite
or infinite degrees of freedom. In nature, chaotic behavior more is a rule than
an exception. The investigation methods of chaotic dynamics are studied in
Lichtenberg and Lieberman (1994). To prove that some of the dynamical systems
are chaotic (nonintegrable systems), a study of the periodical orbits of the system
can be done, case in which this analysis is possible, through numerical methods. A
special characteristic of the classes of periodical solutions is, in the case of chaotic
systems, their instability at small perturbations of the initially chosen conditions
for the system. A frequently used method to observe the chaotic evolution of the
system, at various energy values, uses of the Poincaré surface of section into which
the intersections of the trajectories of the system with the phase plane (r,p) appear.

Opposite to the chaotic dynamical systems are the integrable ones, which
present a regular behavior. Through the perturbation of the Hamiltonian from an
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integrable system, we obtain a chaotic system. In Ciraolo et al. (2003), a method
of the chaos’ control by adding to the Hamiltonian a control term, which has an
order smaller than the perturbation, and leading to a quasi-integrable system with
a more regular dynamics is proposed. In Oloumi and Teychenné (1999), Sirko and
Koch (2002), a local control of chaos, respectively a control using the variations
of the external field are performed.

In a tight connection with integrability is the problem of isolating the constants
of motion for a given physical system. The determination of the invariants for
autonomous or non-autonomous Hamiltonian integrable systems can be done by
using direct or indirect methods. For example in Struckmeier and Riedel (2000),
an invariant for a three dimensional Hamiltonian systems of N particles with the
potential depending explicitly on time is derived by a direct method. The invariant
is found to contain a time-dependent function, embodying a solution of a third-
order differential equation.. In the case of a 2-dimensional autonomous system,
where the Hamiltonian does not depend explicitly on time, a first constant quantity
is immediately found: the Hamiltonian itself that represents the system’s total
energy. Therefore, the only problem to be solved in order to fulfill the integrability
condition would be to find a second invariant.

The indirect methods for constructing the invariants consist in their
determining from the symmetries found for the analyzed system. Both, the Lie
symmetries which leave invariant the evolution equations of the system (leave
invariant the differential equation with partial derivatives which described the
physics’ process) and the Noether symmetries which leave invariant the action of
the system, are in the attention of researchers. In Struckmeier and Riedel (2002),
are pointed out the Noether and Lie symmetries and the associated invariants too,
for the non-autonomous Kepler system. In Ablowitz et al. (1980), Olshanetsky
and Perelomov (1981), two main indirect approaches of integrability are used: the
Painlevé analysis, respectively the Lax-pair method. Another method to generate
symmetries for a dynamical system is based on the notion of a recursion operator.
This algorithm generates infinite hierarchies of symmetries as well as infinite
families of conservation laws depending on higher order derivatives of variables.
In the recent years, were also investigated another type of symmetries for various
models. A special type of nonlocal symmetries are investigated in Gandarias
(2001), Geronimi et al. (2001).

The way followed in this paper is a more direct one. It consists in the check
of the invariants of the system starting from its symmetries. The objective of this
paper consists in presenting a possible algorithmic approach to the integrability
problem of the Hamiltonian dynamical systems. In order to avoid nonsignificant
mathematical complications, we will restrict ourselves to 2-dimmensional dynam-
ical systems with polynomial interaction. Moreover, a particular case, arising from
Quantum field theory and having interesting (regular or chaotic) behaviors, will be
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considered as a toy model: the 2D Yang-Mills mechanical model, that is a model
with even order interaction.

After this introduction, we expose a general algorithm for the computation
of Lie symmetries and associated constants of motion for a bidimensional general
Hamiltonian system which does not depend explicitly on time. In order to capture
the full invariance properties of the analyzed system, we search for Lie symmetries,
in the 4D space (x, y, ẋ, ẏ).By this, more general Lie symmetries than the standard
ones are obtained. In the third section the periodicity and regular behavior, in
some conditions, for a particular Yang-Mills model is investigated and then, by
applying the algorithm from the previous section, the cases of integrability and
the associated invariants are evidenced. Some remarks and conclusions will end
the paper.

2. GENERAL METHODOLOGY

Let us consider a Hamiltonian system described, in a 4-dimmensions phase
space, by the Hamiltonian H (x, y, ẋ, ẏ).We restrict ourselves to a Hamiltonian of
the form:

H = T (ẋ, ẏ) + P (x, y) = 1

2
(ẋ2 + ẏ2) + V (x, y, ap) (1)

where {ap, p = 1 . . . } is an arbitrary set of constants.
The equations of motion have the form:

ẍ = −∂H

∂x
= −∂V

∂x
; ÿ = −∂H

∂y
= −∂V

∂y
(2)

As in Olver (1993), the symmetry operator will have the form:

U = ϕ
∂

∂x
+ φ

∂

∂y
(3)

with a second order extension:

U (2) = ϕ
∂

∂x
+ φ

∂

∂y
+ ϕt ∂

∂ẋ
+ φt ∂

∂ẏ
+ ϕ2t ∂

∂ẍ
+ φ2t ∂

∂ÿ
(4)

The invariant conditions of the evolution equations (2) are:

U (2)

[
ẍ + ∂V

∂x

]
= ϕ2t + U (2)

[
∂V

∂x

]
= 0 (5)

U (2)

[
ÿ + ∂V

∂y

]
= φ2t + U (2)

[
∂V

∂y

]
= 0 (6)
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We will choose for the coefficient functions from (3), the following form linear in
velocities:

ϕ(x, y, ẋ, ẏ) = f (x, y)ẋ + g(x, y)ẏ + µ(x, y) (7)

φ(x, y, ẋ, ẏ) = h(x, y)ẋ + ρ(x, y)ẏ + υ(x, y) (8)

With this choice we compute the expressions for ϕ2t , φ2t , appearing in (4), in the
following way:

ϕ2t = d2

dt2
ϕ = f2x ẋ

3 + g2y ẏ
3 + [g2x + 2fxy]ẏẋ2 + [f2y + 2gxy]ẋẏ2 + ẍ[3fxẋ

+ gxẏ + 2fyẏ + µx] + ÿ[3gyẏ + fyẋ + 2gxẋ + µy] + f ẍ̇ + g ÿ̇ + µ2x ẋ
2

+ 2µxyẋẏ + µ2y ẏ
2 (9)

φ2t = d2

dt2
φ = h2x ẋ

3 + ρ2y ẏ
3 + [ρ2x + 2hxy]ẏẋ2 + [h2y + 2ρxy]ẋẏ2 + ẍ[3hxẋ

+ ρxẏ + 2hyẏ + υx] + ÿ[3ρyẏ + hyẋ + 2ρxẋ + υy] + h ẍ̇ + ρ ÿ̇ + ν2x ẋ
2

+ 2νxyẋẏ + ν2y ẏ
2 (10)

where ẍ, ÿ are the forms (2).
Coming back with the previous expressions in the invariance conditions

(5), (6) and vanishing the coefficients of various monomials of the form ẋaẏb,

a, b = 0, 1, 2 . . . , we obtain a system S of certain number of equations with the
unknown functions f, g , h , ρ , µ , ν, from (7), (8). Solving this system, we obtain
solutions of the form:

f
(
x, y, c

(f )
i

)
, g

(
x, y, c

(g)
j

)
, h

(
x, y, c

(h)
k

)
, ρ

(
x, y, c

(ρ)
l

)
, µ

(
x, y, c(µ)

m

)
, ν

(
x, y, c(ν)

n

)
(11)

where a certain number of arbitrary constants c
(f )
i , c

(g)
j , c

(h)
k , c

(ρ)
l , c

(µ)
m , c(ν)

n , not all
independent, appear in the expression of each determined function. The number
of independent Lie symmetry operators for the Hamiltonian system (1), depends
on the number of independent constants from the previous set.

Let us consider that {Ur, r = 1, n} represents the set of independent Lie
symmetry operators for the system under consideration.

The next step of the algorithm consists in finding the invariants {Ir (x, y, ẋ, ẏ),
r = 1, n} associated to independent set of Lie operators which are determined in
the previous step. These invariants will be solutions of the equations:

U (1)
r Ir = 0, r = 1, n (12)
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where U (1)
r represent the first order extensions of Ur and have the forms:

U (1)
r = ϕ

∂

∂x
+ φ

∂

∂y
+ ϕt ∂

∂ẋ
+ φt ∂

∂ẏ
= ϕ

∂

∂x
+ φ

∂

∂y
+ ϕ̇

∂

∂ẋ
+ φ̇

∂

∂ẏ
= 0

(13)
The set of second invariants {Ir}, r = 1, n will be determined by integrating the
equations Lakshmanan and Velan (1992)

∂Ir

∂x
= −ϕ̇,

∂Ir

∂ẋ
= ϕ

∂Ir

∂y
= −φ̇,

∂Ir

∂ẏ
= φ (14)

It is important to notice that, each Lie symmetry and the associated invariant corre-
spond to a different situation, that is to different concrete forms of the Hamiltonian
function. The system S allows in addition to determine the values or the relations
between the parameters ap from the Hamiltonian (1).

3. APPLICATION: THE YANG-MILLS MECHANICAL MODEL

3.1. Periodicity and Regular Behavior

Let us consider for the Yang-Mills model, in 4 dimensional phase space, the
following general form of the Hamiltonian:

H = 1

2
(ẋ2 + ẏ2) − A

2
x2 − B

2
y2 + ax2y2 + bx4 + dy4 (15)

where A, B, a, b, d are parameters.
The equations of motion have the forms:

ẍ = −∂H

∂x
= Ax − 2axy2 − 4bx3

ÿ = −∂H

∂y
= By − 2ayx2 − 4dy3 (16)

If we should consider the previous system in the 4 dimensional space gener-
ated by (x, y, ẋ, ẏ), we could look for various classes of solutions of the system. It
is not possible to give a list with all the solutions of the system, but, as a rule, a first
step towards integrability is suggested by the existence of periodical solutions. To
be more concrete, we will analyze in this section a particular case of (15), namely
the case with:

H = 1

2
(ẋ2 + ẏ2) + 1

2
x2 + 1

2
y2 + x2y2 + x4 + y4 (17)
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In this case classes of periodical solutions can be found by numerical investiga-
tions. Our effective studies were done by considering the following set of initial
conditions: x0 = 0; y0; ẋ0 = √

2E cos α; ẏ0 = √
2E sin α, where y0 and α are

considered as parameters and E represents the energy of the system. In Fig. 1 we
considered y0 = 0 and various values for α. Figure 2 corresponds to the case α = 0
and y0 variable. In the two cases we have chosen the energy E = 2. In Fig. 3 the
projections of the orbits of the Hamiltonian (17), in the surface of section x = 0
are shown for various values of the energy.

The main feature of the system consists in the simultaneous presence of
regular trajectories and of stochasticity regions at high value of the energy. For the
formers the trajectory strikes the Poincaré surface in some fixed points, called also
periodic points and determines a closed invariant curve. The latter can be identified
by the fact that the successive intersections of the trajectory with the considered
surface do not come twice to the same point and densely cover the surface during
long periods of time. It is interesting to notice that, by increasing the energy,
regular orbits disappear and chaotic areas are extended. For the values of energy
E = 10, E = 4000, one can see how periodic points could generate islands of
stability and for E = 40000, the chaotic behavior appear. The system (17) is more
stable than the another particular case (A = B = −1, a = 1, b = d = 0) for (15),
considered in Cimpoiasu (2005), because in the first case, chaotic regions appear
at much higher value of the energy.

3.2. Integrability Cases for the 2D Yang-Mills Model

In this section we intend to show how the algorithm presented in Section 2
works. We will apply it for the Yang-Mills model given by (15) with d = 1 and
we will derive all the integrability cases of the model.

The invariance conditions for the equations (16) have the forms:

ϕ[−A + 2ay2 + 12bx2] + φ[4axy] + ϕ2t = 0 (18)

ϕ[4axy] + φ[−B + 2ax2 + 12y2] + φ2t = 0 (19)

By introducing in (18), (19) the chosen forms (7), (8) the coefficient function (9),
(10) in which we substitute the particular equations (16) and their derivatives in
time, and by vanishing the coefficients of various monomials of the form ẋaẏb,

a, b = 0, 1, 2, 3, we obtain the set of equations:

f2x = 0, g2y = 0 (20)

2gxy + f2y = 0, 2fxy + g2x = 0 (21)

h2x = 0, ρ2y = 0 (22)

2ρxy + h2y = 0, 2hxy + ρ2x = 0 (23)
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Fig. 1. Some periodical solutions for the initial conditions: y0 = 0 and (a) α = π/4; (b) α = 0.3;
(c) α = 0.4897; (d) α = 0.6982; (e) α = −1.0005; (f) α = 1.308.
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Fig. 2. Some periodical solutions for the initial conditions: α = 0 and (a) y0 = 0.095; (b)y0 = 0.422;
(c) y0 = 1.046; (d) y0 = 1.170; (e) y0 = 1.330; (f) y0 = 1.5505.
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Fig. 3. The evolution of the dynamical system to
chaotic behavior, in the plane (ẏ, y),depending on
its energy level: (A) E = 10; (B) E = 4000; (C)
E = 40000.
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µ2x = 0, µ2y = 0, µxy = 0 (24)

ν2x = 0, ν2y = 0, νxy = 0 (25)

0 = 4axyρ + [−A + 2ay2 + 12bx2 + B − 2ax2 − 12y2]g + [Ax − 2axy2

− 4bx3][gx + 2fy] + 3[By − 2ayx2 − 4y3]gy − 4axyf (26)

4axyh + 3[Ax − 2axy2 − 4bx3]fx + [By − 2ayx2 − 4y3][2gx + fy]

− 4axyg = 0 (27)

[Ax − 2axy2 − 4bx3]µx + [By − 2ayx2 − 4y3]µy + [−A + 2ay2 + 12bx2]µ

+ 4axyυ = 0 (28)

4axyg + 3[By − 2ayx2 − 4y3]ρy + [Ax − 2axy2 − 4bx3][ρx + 2hy]

− 4axyh = 0 (29)

0 = 4axyf + [−B + 2ax2 + 12y2 + A − 2ay2 − 12bx2]h + [By − 2ayx2

− 4y3][hy + 2ρx] + 3[Ax − 2axy2 − 4bx3]hx − 4axyρ (30)

[Ax − 2axy2 − 4bx3]υx + [By − 2ayx2 − 4y3]νy + [−B + 2ax2 + 12y2]υ

+ 4axyµ = 0 (31)

The set of Equations (20)–(25) offers the solutions:

f (x, y) = −c5y
2 − 1

2
c1xy + c4x + c7y + c8 (32)

g(x, y) = c1

2
x2 + c5xy + c2x + c6y + c3 (33)

h(x, y) = c9

2
y2 + c13xy + c10y + c14x + c11 (34)

ρ(x, y) = −c13x
2 − c9

2
xy + c12y + c15x + c16 (35)

µ(x, y) = c17x + c18y + c19 (36)

υ(x, y) = c20x + c21y + c22 (37)

By the substitution of the expressions (32)–(37) into the set of equations (26)–
(31), and by vanishing the coefficients of various monomials of the form xayb,

a, b = 0, 1, 2, 3, we obtain a set of conditions which reduces, tacking account
that parameters a and b from the hamiltonian must not be zero, to the following
relations:

c1 = c4 = c9 = c12 = c17 = c19 = c21 = c22 = 0 (38)

c7 = −2c2, c14 = c2, c11 = c3, c13 = c5,
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c16 − c8 = A − B

a
c5, c10 = c6, c15 = −2c6 (39)

c2[3 − 4a] = 0, c2[B − 4A] = 0, c2[12b − a] = 0 (40)

c3[6b − a] = 0, c3[a − 6] = 0, c3[B − A] = 0 (41)

c5[a − 2b] = 0, c5[a − 2] = 0 (42)

c6[3b − 4a] = 0, c6[a − 12] = 0, c6[4B − A] = 0 (43)

[B − A]c18 = 0, [a − 2]c18 = 0, [B − A]c20 = 0, [a − 2b]c20 = 0 (44)

[a − 6b]c18 − 2ac20 = 0, [a − 6]c20 − 2ac18 = 0 (45)

There are 4 independent cases:
Case I. c2 = 1 and the remaining independent ci, i = 3, 5, 6 are equal to

zero.
From (39), (40), (44), it results:

c7 = −2, c14 = 1, c16 = c8 ≡ c, c18 = c20 = 0 (46)

a = 3

4
, b = 1

16
, B = 4A (47)

In this first case, the Lie symmetry operator has the form:

UI = [(−2y + c)ẋ + xẏ]
∂

∂x
+ [xẋ + cẏ]

∂

∂y
(48)

Case II. c3 = 1 and the remaining independent ci, i = 2, 5, 6 are equal to zero.
The conditions (39), (41), (44), provide the new relations:

c11 = 1, c16 = c8 ≡ c, c18 = c20 = 0 (49)

a = 6, b = 1, A = B (50)

The operator (3) becomes:

UII = [(cẋ + ẏ]
∂

∂x
+ [ẋ + cẏ]

∂

∂y
(51)

Case III. c5 = 1 and the remaining independent ci, i = 2, 3, 6 are equal to zero.
From (39), (42), (45) we obtain:

c3 = 1, c16 = c8 ≡ c if A = B; c18 = −c20 ≡ c0 (52)

a = 2, b = 1 (53)

It follows that the generator of the Lie symmetry has the expression:

UIII = [(−y2 + c)ẋ + xyẏ + c0y]
∂

∂x
+ [(−x2 + c)ẏ + xyẋ − c0x]

∂

∂y
(54)
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Case IV. c6 = 1 and the remaining independent ci, i = 2, 3, 5 are equal to zero
From (39), (43), (44) it results:

c10 = 1, c15 = −2, c16 = c8 ≡ c, c18 = c20 = 0 (55)

a = 12, b = 16, A = 4B (56)

In the last case, the form for Lie operator is:

UIV = [cẋ + yẏ]
∂

∂x
+ [yẋ + (−2x + c)ẏ]

∂

∂y
(57)

Through the method of constructing the Lie second invariants described in the
previous section, we obtain the following cases of integrability:

Case I:

a = 3

4
, b = 1

16
, B = 4A

II = c

[
1

2
ẋ2 + 1

2
ẏ2 + y4 + 1

16
x4 + 3

4
x2y2 − A

2
x2 − 2Ay2

]
− yẋ2 + xẋẏ

+ 1

2
x2y3 + 1

4
yx4 − Ax2y (58)

HI = 1

2
(ẋ2 + ẏ2) − A

2
x2 − 2Ay2 + 3

4
x2y2 + 1

16
x4 + y4

Case II:

a = 6, b = 1, A = B

III = c

[
1

2
ẋ2 + 1

2
ẏ2 + x4 + y4 + 6x2y2 + A

2
x2 − A

2
y2

]
+ ẋẏ

+ 4x3y + 4xy3 − Axy (59)

HII = 1

2
(ẋ2 + ẏ2) − A

2
x2 − A

2
y2 + 6x2y2 + x4 + y4

Case III:

a = 2, b = 1, A = B

IIII = c

[
1

2
ẋ2 + 1

2
ẏ2 + x4 + y4 + 2x2y2 − A

2
x2 − A

2
y2

]
+ co[yẋ − xẏ]

− 1

2
[yẋ − xẏ]2 ≈ c

[
1

2
ẋ2 + 1

2
ẏ2 + x4 + y4 + 2x2y2 − A

2
x2 − A

2
y2

]

+ co[yẋ − xẏ] (60)

HIII = 1

2
(ẋ2 + ẏ2) − A

2
x2 − A

2
y2 + 2x2y2 + x4 + y4
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Case IV:

a = 12, b = 16, A = 4B

IIV = c

[
1

2
ẋ2 + 1

2
ẏ2 + 16x4 + y4 − 2Bx2 − B

2
y2

]
− xẏ2 + yẋẏ + 8y2x3

+ 4xy4 − Bxy2 (61)

HIV = 1

2
(ẋ2 + ẏ2) − 2Bx2 − B

2
y2 + 12x2y2 + 16x4 + y4

4. CONCLUSIONS

The paper intended to give a possible way of studying the symmetries of a
non-linear dynamical system and how they could be used in the direct check of
its integrability. A direct method for the search of the invariants was proposed
in Hietarinta (1987), where various types of invariants, linear, quartic or cubic in
velocities, were considered. In Cimpoiasu et al. (2005), we applied this approach
for two mechanical models with polynomial potentials: Yang-Mills and Hénon-
Heiles systems. In this paper we followed an alternative way of determining the
invariants: the Lie symmetry operators of the system are firstly obtained and the
associated invariants comes from them in the next step. The advantage of the
algorithm we proposed now consists in the fact that no initial assumptions on the
form of the invariants are necessary, they arising in a natural way. As an application
of the algorithm, the Yang-Mills system was investigated in the previous section.
It is important to remark that, if we impose here c = 0 and co = 1, we recover
all the cases of integrability and the associated invariants obtained in Cimpoiasu
et al. (2005). Only the first three cases were listed in Kasperczuk (1994), using
a different algorithm than the one referred to in this paper. At the metodological
level, our approach offers a direct connection between symmetries of the non-linear
systems and their invariances. Also, the “traces of integrability” for a nonintegrable
Yang-Mills case was pointed out by numerical analysis. Two families of periodical
solutions are respectively obtained for two set of initial conditions. It is important
to note that, in the Poincaré surface of section x = 0, at high energy, ones of the
regular orbits disappear and chaotic areas appear.
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